3 resultados para lysine

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite DNA that are separated from chromosome arms by unordered alpha satellite monomers and other repetitive elements. Complexities in assembling such large repetitive regions have limited detailed studies of centromeric chromatin organization. However, a genomic map of the human X centromere has provided new opportunities to explore genomic architecture of a complex locus. We used ChIP to examine the distribution of modified histones within centromere regions of multiple X chromosomes. Methylation of H3 at lysine 4 coincided with DXZ1 higher order alpha satellite, the site of CENP-A localization. Heterochromatic histone modifications were distributed across the 400-500 kb pericentromeric regions. The large arrays of alpha satellite and gamma satellite DNA were enriched for both euchromatic and heterochromatic modifications, implying that some pericentromeric repeats have multiple chromatin characteristics. Partial truncation of the X centromere resulted in reduction in the size of the CENP-A/Cenp-A domain and increased heterochromatic modifications in the flanking pericentromere. Although the deletion removed approximately 1/3 of centromeric DNA, the ratio of CENP-A to alpha satellite array size was maintained in the same proportion, suggesting that a limited, but defined linear region of the centromeric DNA is necessary for kinetochore assembly. Our results indicate that the human X centromere contains multiple types of chromatin, is organized similarly to smaller eukaryotic centromeres, and responds to structural changes by expanding or contracting domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have harnessed two reactions catalyzed by the enzyme sortase A and applied them to generate new methods for the purification and site-selective modification of recombinant protein therapeutics.

We utilized native peptide ligation —a well-known function of sortase A— to attach a small molecule drug specifically to the carboxy-terminus of a recombinant protein. By combining this reaction with the unique phase behavior of elastin-like polypeptides, we developed a protocol that produces homogenously-labeled protein-small molecule conjugates using only centrifugation. The same reaction can be used to produce unmodified therapeutic proteins simply by substituting a single reactant. The isolated proteins or protein-small molecule conjugates do not have any exogenous purification tags, eliminating the potential influence of these tags on bioactivity. Because both unmodified and modified proteins are produced by a general process that is the same for any protein of interest and does not require any chromatography, the time, effort, and cost associated with protein purification and modification is greatly reduced.

We also developed an innovative and unique method that attaches a tunable number of drug molecules to any recombinant protein of interest in a site-specific manner. Although the ability of sortase A to carry out native peptide ligation is widely used, we demonstrated that Sortase A is also capable of attaching small molecules to proteins through an isopeptide bond at lysine side chains within a unique amino acid sequence. This reaction —isopeptide ligation— is a new site-specific conjugation method that is orthogonal to all available protein-small conjugation technologies and is the first site-specific conjugation method that attaches the payload to lysine residues. We show that isopeptide ligation can be applied broadly to peptides, proteins, and antibodies using a variety of small molecule cargoes to efficiently generate stable conjugates. We thoroughly assessed the site-selectivity of this reaction using a variety of analytical methods and showed that in many cases the reaction is site-specific for lysines in flexible, disordered regions of the substrate proteins. Finally, we showed that isopeptide ligation can be used to create clinically-relevant antibody-drug conjugates that have potent cytotoxicity towards cancerous cells